Trends of ozone total columns and vertical distribution from FTIR observations at eight NDACC stations around the globe

نویسندگان

  • C. Vigouroux
  • T. Blumenstock
  • M. Coffey
  • Q. Errera
  • O. García
  • N. B. Jones
  • J. W. Hannigan
  • F. Hase
  • B. Liley
  • E. Mahieu
  • J. Mellqvist
  • J. Notholt
  • M. Palm
  • G. Persson
  • M. Schneider
  • C. Servais
  • D. Smale
  • M. De Mazière
چکیده

Ground-based Fourier transform infrared (FTIR) measurements of solar absorption spectra can provide ozone total columns with a precision of 2 % but also independent partial column amounts in about four vertical layers, one in the troposphere and three in the stratosphere up to about 45 km, with a precision of 5–6 %. We use eight of the Network for the Detection of Atmospheric Composition Change (NDACC) stations having a long-term time series of FTIR ozone measurements to study the total and vertical ozone trends and variability, namely, Ny-Ålesund (79 N), Thule (77 N), Kiruna (68 N), Harestua (60 N), Jungfraujoch (47 N), Izaña (28 N), Wollongong (34 S) and Lauder (45 S). The length of the FTIR time series varies by station but is typically from about 1995 to present. We applied to the monthly means of the ozone total and four partial columns a stepwise multiple regression model including the following proxies: solar cycle, quasi-biennial oscillation (QBO), El Niño–Southern Oscillation (ENSO), Arctic and Antarctic Oscillation (AO/AAO), tropopause pressure (TP), equivalent latitude (EL), Eliassen–Palm flux (EPF), and volume of polar stratospheric clouds (VPSC). At the Arctic stations, the trends are found mostly negative in the troposphere and lower stratosphere, very mixed in the middle stratosphere, positive in the upper stratosphere due to a large increase in the 1995–2003 period, and non-significant when considering the total columns. The trends for midlatitude and subtropical stations are all non-significant, except at Lauder in the troposphere and upper stratosphere and at Wollongong for the total columns and the lower and middle stratospheric columns where they are found positive. At Jungfraujoch, the upper stratospheric trend is close to significance (+0.9±1.0 %decade). Therefore, some signs of the onset of ozone mid-latitude recovery are observed only in the Southern Hemisphere, while a few more years seem to be needed to observe it at the northern mid-latitude station.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparisons between ground-based FTIR and MIPAS N2O and HNO3 profiles before and after assimilation in BASCOE

Within the framework of the Network for Detection of Atmospheric Composition Change (NDACC), regular ground-based Fourier transform infrared (FTIR) measurements of many species are performed at several locations. Inversion schemes provide vertical profile information and characterization of the retrieved products which are therefore relevant for contributing to the validation of MIPAS profiles ...

متن کامل

Quality assessment of ozone total column amounts as monitored by ground-based solar absorption spectrometry in the near infrared (> 3000 cm−1)

This study examines the possibility of groundbased remote-sensing ozone total column amounts (OTC) from spectral signatures at 3040 and 4030 cm−1. These spectral regions are routinely measured by the NDACC (Network for the Detection of Atmospheric Composition Change) ground-based FTIR (Fourier transform infraRed) experiments. In addition, they are potentially detectable by the TCCON (Total Carb...

متن کامل

Validation of ACE and OSIRIS Ozone and NO2 Measurements Using Ground Based Instruments at 80° N

The Optical Spectrograph and Infra-Red Imager System (OSIRIS) and the Atmospheric Chemistry Experiment (ACE) have been taking measurements from space since 2001 and 2003, respectively. This paper presents intercomparisons between ozone and NO2 measured by the ACE and OSIRIS satellite instruments and by groundbased instruments at the Polar Environment Atmospheric Research Laboratory (PEARL), whi...

متن کامل

Construction of merged satellite total O3 and NO2 time series in the tropics for trend studies and evaluation by comparison to NDACC SAOZ measurements

Long time series of ozone and NO2 total column measurements in the southern tropics are available from two ground-based SAOZ (Système d’Analyse par Observation Zénithale) UV-visible spectrometers operated within the Network for the Detection of Atmospheric Composition Change (NDACC) in Bauru (22 S, 49 W) in S-E Brazil since 1995 and Reunion Island (21 S, 55 E) in the S-W Indian Ocean since 1993...

متن کامل

4. Validation of the CrIS Fast Physical NH3 Retrieval with ground-based FTIR

Presented here is the validation of the CrIS Fast Physical Retrieval (CFPR) NH3 column and profile measurements using ground-based Fourier Transform Infrared (FTIR) observations. We use the total columns and profiles from seven FTIR sites in the Network for the Detection of Atmospheric Composition Change (NDACC) to validate the satellite data products. The overall FTIR and CrIS total columns ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015